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Abstract. For certain orientations of Josephson junctions between two px-wave or two d-wave supercon-
ductors, the subgap Andreev bound states produce a 4π-periodic relation between the Josephson current
I and the phase difference φ: I ∝ sin(φ/2). Consequently, the ac Josephson current has the fractional
frequency eV/�, where V is the dc voltage. In the tunneling limit, the Josephson current is proportional
to the first power (not square) of the electron tunneling amplitude. Thus, the Josephson current between
unconventional superconductors is carried by single electrons, rather than by Cooper pairs. The fractional
ac Josephson effect can be observed experimentally by measuring frequency spectrum of microwave radi-
ation from the junction. We also study junctions between singlet s-wave and triplet px-wave, as well as
between chiral px ± ipy-wave superconductors.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 74.70.Kn
Organic superconductors – 74.72.-h Cuprate superconductors (high-Tc and insulating parent compounds)
– 74.70.Pq Ruthenates

1 Introduction

In many materials, the symmetry of the superconducting
order parameter is unconventional, i.e. not s-wave. In the
high-Tc cuprates, it is the singlet dx2−y2-wave [1]. There is
experimental evidence that, in the quasi-one-dimensional
(Q1D) organic superconductors (TMTSF)2X [2], the sym-
metry is triplet [3], most likely the px-wave [4,5], with the
x-axis along the conducting chains. Experiments indicate
that Sr2RuO4 has the triplet chiral px ± ipy-wave pairing
symmetry [6].

The unconventional pairing symmetry typically re-
sults in formation of subgap Andreev bound states [7]
on the surfaces of these superconductors [8]. For d-wave
cuprate superconductors, the midgap Andreev states were
predicted theoretically in reference [9] and observed ex-
perimentally as a zero-bias conductance peak in tunnel-
ing between normal metals and superconductors (see re-
view [10]). For the Q1D organic superconductors, the
midgap states were theoretically predicted to exist at the
edges perpendicular to the chains [11,12]. In the chiral
superconductor Sr2RuO4, the subgap surface states are
expected to have a chiral energy dispersion [13]. Their
contribution to tunneling is more complicated [14] than a
simple zero-bias conductance peak found for the midgap
Andreev states. Various ways of observing electron edge
states experimentally are discussed in reference [15].

a e-mail: yakovenk@physics.umd.edu

When two unconventional superconductors are joined
together in a Josephson junction, their Andreev surface
states hybridize to form Andreev bound states in the junc-
tion. These states play an important role in the Joseph-
son current through the junction [16]. Andreev bound
states in high-Tc junctions were reviewed in reference [17].
The Josephson effect between two Q1D px-wave supercon-
ductors was studied in references [18,19]. Andreev reflec-
tion [20] at the interfaces between the A and B phases
of superfluid 3He was studied in reference [21]. However,
Andreev bound states were not mentioned in this paper.

In the present paper, we predict a new effect for
Josephson junctions between unconventional nonchiral su-
perconductors, which we call the fractional ac Josephson
effect. Suppose both superconductors forming a Joseph-
son junction have surface midgap states originally. This
is the case for the butt-to-butt junction between two px-
wave Q1D superconductors, as shown in Figure 1a, and
for the 45◦/45◦ in-plane junction between two d-wave su-
perconductors, as shown in Figure 5a. (The two angles
indicate the orientation of the junction line relative to
the b-axes of each dx2−y2 superconductor.) We predict
that the contribution of the hybridized Andreev bound
states produces a 4π-periodic relation between the su-
percurrent I and the superconducting phase difference φ:
I ∝ sin(φ/2) [22]. Consequently, the ac Josephson effect
has the frequency eV/�, where e is the electron charge,
V is the applied dc voltage, and � is the Planck con-
stant. The predicted frequency is a half of the conventional
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Fig. 1. (a) Butt-to-butt Josephson junction between two Q1D
px-wave superconductors. (b) The energies (left panel) and the
currents (right panel) of the Andreev subgap states in the s-s
junction as functions of the phase difference φ for D = 1 (thin
lines) and D = 0.9 (thick lines). (c) The same as (b) for the
px-px junction at D = 0.2.

Josephson frequency 2eV/� originating from the conven-
tional Josephson relation I ∝ sinφ with the period of 2π.
Qualitatively, the predicted effect can be interpreted as
follows. The Josephson current across the two unconven-
tional superconductors is carried by tunneling of single
electrons (rather than Cooper pairs) between the two res-
onant midgap states. Thus, the Cooper pair charge 2e
is replaced the single charge e in the expression for the
Josephson frequency. This interpretation is also supported
by the finding that, in the tunneling limit, the Josephson
current is proportional to the first power (not square) of
the electron tunneling amplitude [23–25]. Possibilities for
experimental observation of the fractional ac Josephson
effect are discussed in Section 5. A summary of this work
is published in the conference proceedings [26].

The predicted current-phase relation I ∝ sin(φ/2) is
quite radical, because every textbook on superconductiv-
ity says that the Josephson current must be 2π-periodic
in the superconducting phase difference φ [22]. To our
knowledge, the only paper that discussed the 4π-periodic
Josephson effect is reference [27] by Kitaev. He considered
a highly idealized model of spinless fermions on a one-
dimensional (1D) lattice with superconducting pairing on
the neighboring sites. The pairing potential in this case
has the px-wave symmetry, and midgap states exist at the
ends of the chain. They are described by the Majorana
fermions, which Kitaev proposed to use for nonvolatile
memory in quantum computing. He found that, when two
such superconductors are brought in contact, the system
is 4π-periodic in the phase difference between the super-
conductors. Our results are in agreement with his work.
However, we formulate the problem as an experimentally
realistic Josephson effect between known superconducting
materials.

For completeness, we also calculate the spectrum of
Andreev bound states and the Josephson current between
a singlet s-wave and a triplet p-wave superconductors, as
well as between two chiral p-wave superconductors [28].

In agreement with previous literature [29–31], we find
that a Josephson current is permitted between singlet and
triplet superconductors, contrary to a common miscon-
ception that it is forbidden by the symmetry difference.
However, we do not find the fractional Josephson effect in
these cases.

2 The basics

The spin symmetry of the Cooper pairing is classified as
either singlet 〈ĉσ(k)ĉσ′ (−k)〉 ∝ εσσ′∆(k) = iσ̂

(y)
σσ′∆(k)

or triplet 〈ĉσ(k)ĉσ′(−k)〉 ∝ iσ̂(y)(σ̂ · n)∆(k) [32]. Here
ĉσ(k) is the annihilation operator of an electron with the
spin σ and momentum k; εσσ′ is the antisymmetric met-
ric tensor and σ̂ are the Pauli matrices acting in the spin
space; n is a unit vector characterizing polarization of the
triplet state. In this paper, we consider only the class of
triplet superconductors where the spin-polarization vec-
tor n has a uniform, momentum-independent orienta-
tion. Everywhere in the paper, except in Section 3.6,
we select the spin quantization axis z along the vec-
tor n. Then the Cooper pairing takes place between elec-
trons with the opposite z-axis spin projections σ and σ̄:
〈ĉσ(k)ĉσ̄(−k)〉 ∝ ∆σ(k). Because the fermion operators
ĉ anticommute, the pairing potential has the symmetry
∆σ(k) = ∓∆σ̄(k) = ±∆σ(−k), where the upper and
lower signs correspond to the singlet and triplet cases.

We select the coordinate axis x perpendicular to the
Josephson junction plane. We assume that the interface
between the two superconductors is smooth enough, so
that the electron momentum component ky, parallel to
the junction plane, is a conserved good quantum number.

Electron states in a superconductor are described by
the Bogoliubov operators γ̂, which are related to the elec-
tron operators ĉ by the following equations [33]

γ̂nσky =
∫
dx
[
u∗nσky

(x) ĉσky (x) + v∗nσky
(x) ĉ†

σ̄k̄y
(x)
]
,

(1)

ĉσky (x) =
∑

n

[
unσky (x) γ̂nσky + v∗nσ̄k̄y

(x) γ̂†
nσ̄k̄y

]
, (2)

where k̄y = −ky, and n is the quantum number of
the Bogoliubov eigenstates. The two-components vectors
ψnσky (x) = [unσky (x), vnσky (x)] are the eigenstates of the
Bogoliubov-de Gennes (BdG) equation with the eigenen-
ergies Enσky(

εky(k̂x) + U(x) ∆̂σky (x, k̂x)
∆̂†

σky
(x, k̂x) −εky(k̂x) − U(x)

)
ψn = Enψn, (3)

where k̂x = −i∂x is the x component of the electron mo-
mentum operator, and U(x) is a potential. In equation (3)
and below, we often omit the indices σ and ky to shorten
notation where it does not cause confusion.
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3 Junctions between quasi-one-dimensional
superconductors

In this section, we consider junctions between two
Q1D superconductors, such as organic superconductors
(TMTSF)2X, with the chains along the x-axis, as shown
in Figure 1a. For a Q1D conductor, the electron en-
ergy dispersion in equation (3) can be written as ε =
�

2k̂2
x/2m− 2tb cos(bky)− µ, where m is an effective mass,

µ is the chemical potential, b and tb are the distance and
the tunneling amplitude between the chains. The super-
conducting pairing potentials in the s- and px-wave cases
have the forms

∆̂σky (x, k̂x) =
{

σ∆β , s-wave,
∆β k̂x/kF , px-wave,

(4)

where �kF =
√

2mµ is the Fermi momentum, and σ is
treated as + for ↑ and − for ↓. The index β = R,L labels
the right (x > 0) and left (x < 0) sides of the junction,
and ∆β acquires a phase difference φ across the junction:

∆R = ∆0e
iφ, ∆L = ∆0. (5)

The potential U(x) = U0δ(x) in equation (3) represents
the junction barrier located at x = 0. Integrating equa-
tion (3) over x from –0 to +0, we find the boundary con-
ditions at x = 0:

ψL = ψR, ∂xψR − ∂xψL = kFZ ψ(0), (6)

Z = 2mU0/�
2kF , D = 4/(Z2 + 4), (7)

where D is the transmission coefficient of the barrier.

3.1 Andreev bound states

A general solution of equation (3) is a superposition of the
terms with the momenta close to αkF , where the index
α = ± labels the right- and left-moving electrons:

ψβσ = eβκx

[
Aβ

(
uβσ+

vβσ+

)
eik̃F x +Bβ

(
uβσ−
vβσ−

)
e−ik̃F x

]
,

(8)
where β = ∓ for R and L. Equation (8) describes a subgap
state with an energy |E| < ∆0, which is localized at the
junction and decays exponentially in x within the length
1/κ. The coefficients (uβσα, vβσα) in equation (8) are de-
termined by substituting the right- and left-moving terms
separately into equation (3) for x �= 0, where U(x) = 0.
In the limit kF 	 κ, we find

ηβσα =
vβσα

uβσα
=
E + iαβ�κvF

∆βσα
, κ =

√
∆2

0 − |E|2
�vF

, (9)

where vF = �kF /m is the Fermi velocity, and

∆βσα =
{
σ∆β , s-wave,
α∆β , px-wave, (10)

with ∆β given by equation (5). The ky-dependent Fermi
momentum �k̃F = �kF + 2tb cos(bky)/vF in equation (8)
eliminates the dispersion in ky from the BdG equation.

Substituting equation (8) into the boundary condi-
tions (6), we obtain four linear homogeneous equations for
the coefficients Aβ and Bβ. These equations are compati-
ble if the determinant of the corresponding 4×4 matrix is
zero. This compatibility condition has the following form:

(u+σ−v−σ− − v+σ−u−σ−)(u+σ+v−σ+ − v+σ+u−σ+)
(u+σ−v−σ+ − v+σ−u−σ+)(u+σ+v−σ− − v+σ+u−σ−)

=

1 −D. (11)

Using the variables η defined in equation (9), equation (11)
can be written in a simpler form

(η−σ− − η+σ−)(η−σ+ − η+σ+)
(η−σ+ − η+σ−)(η−σ− − η+σ+)

= 1 −D. (12)

Substituting equation (9) into equation (12), we obtain an
equation for the energies of the Andreev bound states. For
a given σ, there are two subgap states with the energies
Ea = aE0(φ) labeled by the index a = ±, where

E
(s)
0 (φ) = −∆0

√
1 −D sin2(φ/2), s-s junction, (13)

E
(p)
0 (φ) = −∆0

√
D cos(φ/2), px-px junction.

(14)

The energies (13) and (14) are plotted as functions of φ
in the left panels (b) and (c) of Figure 1. Without barrier
(D = 1), the spectra of the s-s and px-px junctions are the
same and consist of two crossing curves E = ∓∆0 cosφ/2,
shown by the thin lines in the left panel of Figure 1b. A
nonzero barrier (D < 1) affects the energies of the An-
dreev bound states in the s-s and px-px junctions in dif-
ferent ways. In the s-s case, the two energy levels repel
near φ = π and form two separated 2π-periodic branches
shown by the thick lines in the left panel of Figure 1b.
This is well known for the s-s junctions [33,34]. In con-
trast, in the px-px case, the two energy levels continue
to cross at φ = π, and they detach from the continuum
of states above +∆0 and below −∆0 at φ = 0 and 2π, as
shown in the left panel of Figure 1c. The absence of energy
levels repulsion at φ = π indicates that there is no matrix
element between these levels in the px-px case, unlike in
the s-s case.

As shown in Section 4.1, the 45◦/45◦ junction between
two d-wave superconductors is mathematically equivalent
to the px-px junction. Equation (14) was derived for the
45◦/45◦ junction in references [24,25,35].

3.2 dc Josephson effect in thermodynamic equilibrium

It is well-known [33,36] that the current carried by a quasi-
particle state a is

Ia =
2e
�

∂Ea

∂φ
. (15)
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The two subgap states carry opposite currents, which are
plotted vs. φ in the right panels (b) and (c) of Figure 1
for the s-s and px-px junctions. In thermodynamic equi-
librium, the total current is determined by the Fermi oc-
cupation numbers fa of the states at a temperature T :

I =
2e
�

∑
a=±

∂Ea

∂φ
fa = −2e

�

∂E0

∂φ
tanh

(
E0

2T

)
. (16)

For the s-s junction, substituting equation (13) into
equation (16), we recover the Ambegaokar-Baratoff for-
mula [37] in the tunneling limit D 
 1

Is ≈ D sinφ
e∆0

2�
tanh

(
∆0

2T

)
= sinφ

π∆0

2eR
tanh

(
∆0

2T

)
(17)

and the Kulik-Omelyanchuk formula [38] in the transpar-
ent limit D → 1

Is ≈ sin
(
φ

2

)
e∆0

�
tanh

(
∆0 cos(φ/2)

2T

)
. (18)

Taking into account that the total current is proportional
to the number N of conducting channels in the junction
(e.g. the number of chains), we have replaced the trans-
mission coefficient D in equation (17) by the junction re-
sistance R = h/2Ne2D in the normal state.

Substituting equation (14) into equation (16), we find
the Josephson current in the px-px junction in thermody-
namic equilibrium:

Ip =
√
D sin

(
φ

2

)
e∆0

�
tanh

(
∆0

√
D cos(φ/2)

2T

)

= sin
(
φ

2

)
π∆0√
DeR

tanh

(
∆0

√
D cos(φ/2)

2T

)
. (19)

The temperature dependences of the critical currents for
the s-s and px-px junctions are shown in Figure 2. They
are obtained from equations (17) and (19) assuming the
BCS temperature dependence for ∆0. In the vicinity of Tc,
Ip and Is have the same behavior. With the decrease of
temperature, Is quickly saturates to a constant value, be-
cause, for D 
 1, E(s)

a ≈ ∓∆0 (13), thus, for T � ∆0,
the upper subgap state is empty and the lower one is
completely filled. In contrast, Ip rapidly increases with
decreasing temperature as 1/T and saturates to a value
enhanced by the factor 2/

√
D relative to the Ambegaokar-

Baratoff formula (13) at T = 0. This is a consequence of
two effects. As equations (17) and (19) show, Is ∝ D and
Ip ∝ √

D, thus Ip 	 Is in the tunneling limit D 
 1. At
the same time, the energy splitting between the two sub-
gap states in the px-px junction is small compared to the
gap: E(p)

0 ∝ √
D∆0 
 ∆0. Thus, for

√
D∆0 � T � ∆0,

the two subgap states are almost equally populated, so
the critical current has the 1/T temperature dependence
analogous to the Curie spin susceptibility.

Equation (19) was derived analytically for the 45◦/45◦
junction between two d-wave superconductors in refer-
ences [23,24], and a similar result was calculated numer-
ically for the px-px junction in references [18,19]. Notice

0 0.5 1

T/TC

0

I C

D

∆
0

R
/π

2e

1

2

x x

s−s

p −p

Fig. 2. Critical currents of the s-s (dashed line) and px-px

(solid line) Josephson junctions as functions of temperature
for D = 0.3.

that equation (19) gives the Josephson current Ip(φ) that
is a 2π-periodic functions of φ, both for T = 0 and T �= 0.
This is a consequence of the thermodynamic equilibrium
assumption. At T = 0, this assumption implies that the
subgap state with the lower energy is occupied, and the
one with the higher energy is empty. As one can see in
Figure 1, the lower energy is always a 2π-periodic func-
tions of φ. The assumption of thermodynamic equilibrium
was explicitly made in reference [24] and was implicitly
invoked in references [18,19,23] by using the Matsubara
diagram technique. In reference [39], temperature depen-
dence of the Josephson critical current was measured in
the YBCO ramp-edge junctions with different crystal an-
gles and was found to be qualitatively consistent with the
upper curve in Figure 2.

3.3 Dynamical fractional ac Josephson effect

The calculations of the previous section apply in the static
case, where a given phase difference φ is maintained for an
infinitely long time, so the occupation numbers of the sub-
gap states have enough time to relax to thermodynamic
equilibrium. Now let us consider the opposite, dynami-
cal limit. Suppose a small voltage eV 
 ∆0 is applied
to the junction, so the phase difference acquires depen-
dence on time t: φ(t) = 2eV t/�. In this case, the state of
the system is determined dynamically starting from the
initial conditions. Let us consider the px-px junction at
T = 0 in the initial state φ = 0, where the two subgap
states (14) with the energies ±E0 are, correspondingly, oc-
cupied and empty. If φ(t) changes sufficiently slowly (adia-
batically), the occupation numbers of the subgap states do
not change. In other words, the states shown by the solid
and dotted lines in Figure 1c remains, correspondingly, oc-
cupied and empty. The occupied state (14) produces the
current (15):

Ip(t) =
√
De∆0

�
sin
(
φ(t)
2

)
=

√
De∆0

�
sin
(
eV t

�

)
.

(20)
The frequency of the ac current (20) is eV/�, a half of the
conventional Josephson frequency 2eV/�. The fractional
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frequency can be traced to the fact that the energies equa-
tion (14) and the corresponding wave functions have the
period 4π in φ, rather than conventional 2π. Although at
φ = 2π the spectrum in the left panel of Figure 1c is the
same as at φ = 0, the occupation numbers are different:
the lower state is empty and the upper state is occupied.
Only at φ = 4π the occupation numbers are the same as
at φ = 0.

The 4π periodicity is the consequence of the energy
levels crossing at φ = π. (In contrast, in the s-wave case,
the levels repel at φ = π in Figure 1b, thus the energy
curves are 2π-periodic.) As discussed at the end of Sec-
tion 3.1, there is no matrix element between the cross-
ing energy levels at φ = π. Thus, there are no transi-
tions between them, so the occupation numbers of the
solid and dotted curves in Figure 1c are preserved. In
order to show this more formally, we can write a gen-
eral solution of the time-dependent BdG equation as a
superposition of the two subgap states with the time-
dependent φ(t): ψ(t) =

∑
a Ca(t)ψa[φ(t)]. The matrix el-

ement of transitions between the states is proportional to
φ̇〈ψ+|∂φψ−〉 = φ̇〈ψ+|∂φĤ |ψ−〉/(E−−E+). We found that
it is zero in the px-wave case, thus there are no transitions,
and the initial occupation numbers of the subgap states
at φ = 0 are preserved dynamically.

As one can see in Figure 1c, the system is not in the
ground state when π < φ < 3π, because the upper energy
level is occupied and the lower one is empty. In princi-
ple, the system might be able to relax to the ground state
by emitting a phonon or a photon. At present time, we
do not have an explicit estimate for such inelastic relax-
ation time, but we expect that it is quite long. (The other
papers [18,19,23,24] that assume thermodynamic equilib-
rium for each value of the phase φ do not have an estimate
of the relaxation time either.) To observe the predicted ac
Josephson effect with the fractional frequency eV/�, the
period of Josephson oscillations should be set shorter than
the inelastic relaxation time, but not too short, so that
the time evolution of the BdG equation can be treated
adiabatically. Controlled nonequilibrium population of the
upper Andreev bound state was recently achieved experi-
mentally in an s-wave Josephson junction in reference [40].

Equation (20) can be generalized to the case where
initially the two subgap states are populated thermally at
φ = 0, and these occupation numbers are preserved by
dynamical evolution

Ip(t) =
2e
�

∑
a

∂Ea[φ(t)]
∂φ

f [Ea(φ = 0)] (21)

= sin
(
eV t

�

)
π∆0√
DeR

tanh

(
∆0

√
D

2T

)
. (22)

Notice that the periodicities of the dynamical equa-
tion (22) and the thermodynamic equation (19) are dif-
ferent. The latter equation assumes that the occupation
numbers of the subgap states are in instantaneous thermal
equilibrium for each φ.

3.4 Tunneling Hamiltonian approach

In the infinite barrier limit D → 0, the energies ±E(p)
0 of

the two subgap states (14) degenerate to zero, i.e. they
become midgap states. The wave functions (8) simplify as
follows:

ψ±0 =
ψL0(x) ∓ ψR0(x)√

2
, (23)

ψL0 =
√

2κ sin(kFx) eκx

(
1
i

)
θ(−x), (24)

ψR0 =
√

2κ sin(kFx) e−κx

(
eiφ/2

−ie−iφ/2

)
θ(x). (25)

Since at D = 0 the Josephson junction consists of
two semi-infinite uncoupled px-wave superconductors, ψL0

and ψR0 are the wave functions of the surface midgap
states [11] belonging to the left and right superconduc-
tors. Let us examine the properties of the midgap states
in more detail.

If (u, v) is an eigenvector of equation (3) with an eigen-
value En, then (−v∗, u∗) for s-wave and (v∗, u∗) for p-wave
are the eigenvectors with the energy En̄ = −En. It follows
from these relations and equation (1) that γ̂n̄σ̄k̄y

= Cγ̂†nσky

with |C| = 1. Notice that in the s-wave case, because
(u, v) and (−v∗, u∗) are orthogonal for any u and v, the
states n and n̄ are always different. However, in the p-wave
case, the vectors (u, v) and (v∗, u∗) may be proportional,
in which case they describe the same state with E = 0.
The states (24) and (25) indeed have this property:

vL0 = iu∗L0, vR0 = −iu∗R0. (26)

Substituting equation (26) into equation (1), we find the
Bogoliubov operators of the left and right midgap states

γ̂†L0σky
= iγ̂L0σ̄k̄y

, γ̂†R0σky
= −iγ̂R0σ̄k̄y

. (27)

Operators (27) correspond to the Majorana fermions dis-
cussed in reference [27]. In the presence of a midgap state,
the sum over n in equation (2) should be understood as∑

n>0 +(1/2)
∑

n=0, where we identify the second term as
the projection P ĉ of the electron operator onto the midgap
state. Using equations (26, 27), and (2), we find

P ĉσky(x) = u0(x)γ̂0σky = v∗0(x)γ̂†
0σ̄k̄y

. (28)

Let us consider two semi-infinite px-wave superconductors
on a 1D lattice with the spacing l, one occupying x ≤ l̄ =
−l and another x ≥ l. They are coupled by the tunneling
matrix element τ between the sites l̄ and l:

Ĥτ = τ
∑
σky

[
ĉ†Lσky

(l̄) ĉRσky (l) + ĉ†Rσky
(l) ĉLσky(l̄)

]
. (29)

In the absence of coupling (τ = 0), the subgap wave
functions of each superconductor are given by equa-
tions (24, 25). Using equations (28), (26), (24), and (25),



354 The European Physical Journal B

the tunneling Hamiltonian projected onto the basis of
midgap states is

PĤτ = τ [u∗L0(l̄)uR0(l) + c.c.] (γ̂†L0↑γ̂R0↑ + h.c.)

= ∆0

√
D cos(φ/2) (γ̂†L0↑γ̂R0↑ + γ̂†R0↑γ̂L0↑), (30)

where
√
D = 4τ sin2 kF l/�vF is the transmission ampli-

tude, and we omitted summation over the diagonal in-
dex ky. Notice that equation (30) is 4π-periodic in φ [27].

Hamiltonian (30) operates between the two degener-
ate states of the system related by annihilation of the Bo-
goliubov quasiparticle in the right midgap state and its
creation in the left midgap state. In this basis, Hamilto-
nian (30) can be written as a 2 × 2 matrix

PĤτ = ∆0

√
D cos(φ/2)

(
0 1
1 0

)
. (31)

The eigenvectors of Hamiltonian (31) are (1,∓1), i.e.
the antisymmetric and symmetric combinations of the
right and left midgap states given in equation (23). Their
eigenenergies are E±(φ) = ∓∆0

√
D cos(φ/2), in agree-

ment with equation (14). The tunneling current operator
is obtained by differentiating equations (30) or (31) with
respect to φ. Because φ appears only in the prefactor, the
operator structures of the current operator and the Hamil-
tonian are the same, so they are diagonal in the same ba-
sis. Thus, the energy eigenstates are simultaneously the
eigenstates of the current operator with the eigenvalues

I± = ±
√
De∆0

�
sin
(
φ

2

)
, (32)

in agreement with equation (20). The same basis (1,∓1)
diagonalizes Hamiltonian (31) even when a voltage V is
applied and the phase φ is time-dependent. Then the ini-
tially populated eigenstate with the lower energy produces
the current Ip =

√
D(e∆0/�) sin(eV t/�) with the frac-

tional Josephson frequency eV/�, in agreement with equa-
tion (20).

3.5 Josephson current carried by single electrons,
rather than Cooper pairs

In the tunneling limit, the transmission coefficient D is
proportional to the square of the electron tunneling am-
plitude τ : D ∝ τ2. Equations (20) and (32) show that the
Josephson current in the px-px junction is proportional
to the first power of the electron tunneling amplitude τ .
This is in contrast to the s-s junction, where the Joseph-
son current (17) is proportional to τ2. This difference re-
sults in the big ratio Ip/Is = 2/

√
D between the critical

currents at T = 0 in the px- and s-wave cases, as shown
in Figure 2 and discussed in Section 3.2. The reason for
the different powers of τ is the following. In the px-wave
case, the transfer of just one electron between the degen-
erate left and right midgap states is a real (nonvirtual)
process. Thus, the eigenenergies are determined from the

secular equation (31) already in the first order of τ . In
the s-wave case, there are no midgap states, so the trans-
ferred electron is taken from below the gap and placed
above the gap, at the energy cost 2∆0. Thus, the transfer
of a single electron is a virtual (not real) process. It must
be followed by the transfer of another electron, so that
the pair of electrons is absorbed into the condensate. This
gives the current proportional to τ2.

This picture implies that the Josephson supercurrent
across the interface is carried by single electrons in the
px-px junction and by Cooper pairs in the s-s junc-
tion. Because the single-electron charge e is a half of the
Cooper-pair charge 2e, the frequency of the ac Josephson
effect in the px-px junction is eV/�, a half of the con-
ventional Josephson frequency 2eV/� for the s-s junction.
These conclusions also apply to a junction between two
cuprate d-wave superconductors in such orientation that
both sides of the junction have surface midgap states, e.g.
to the 45◦/45◦ junction (see Sect. 4.1).

In both the px-px and s-s junctions, electrons trans-
ferred across the interface are taken away into the bulk by
the supercurrent of Cooper pairs. In the case of the px-px

junction, a single transferred electron occupies a midgap
state until another electron gets transferred. Then the pair
of electrons becomes absorbed into the bulk condensate,
the midgap state returns to the original configuration, and
the cycle repeats. In the case of the s-s junction, two elec-
trons are simultaneously transferred across the interface
and become absorbed into the condensate. Clearly, elec-
tric charge is transferred across the interface by single elec-
trons at the rate proportional to τ in the first case and by
Cooper pairs at the rate proportional to τ2 in the second
case, but the bulk supercurrent is carried by the Cooper
pairs in both cases.

3.6 Josephson effect between triplet superconductors
with nonparallel n-vectors

In this section, we consider the Josephson effect be-
tween two px-wave superconductors with nonparallel spin-
polarization vectors n forming an angle θ. This problem
was studied in reference [19] using a tunneling Hamilto-
nian approach. Here we analyze the problem using the
BdG formulation. There are experimental indications that
the spin-polarization vector n is parallel to the crystal
axis c in the (TMTSF)2X compounds [3,5]. Then the con-
sidered junction can be realized in the geometry shown in
Figure 1a where the c-axes of the two superconductors are
rotated relative to each other by the angle θ around the
common a-axis along the chains.

Let us select the spin quantization axis z perpendic-
ular to both vectors n, and the x-axis in the spin space
parallel to the vector n of the left superconductor. Then
the vector n of the right superconductor lies in the (x, y)-
plane at the angle θ to the x-axes: n = (cos θ, sin θ, 0).
In this representation, the superconducting pairing takes
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place between electrons with parallel spins:

〈ĉσ(k)ĉσ′(−k)〉 ∝ iσ̂(y) (σ̂(x)nx + σ̂(y)ny)∆(k) =(
eiθ 0

0 − e−iθ

)
∆(k). (33)

Then, the Josephson effect can be considered separately
for the spin up and down sectors having the phase differ-
ences φ± θ, correspondingly. Using equation (14) for the
px-px junction, we find the energies of the Andreev bound
states for each spin sector

Ea,↑ = −a∆0

√
D cos

(
φ+ θ

2

)
, (34)

Ea,↓ = −a∆0

√
D cos

(
φ− θ

2

)
. (35)

The total Josephson current is obtained by adding the cur-
rents carried by the two spin sectors [41]. For simplicity,
below we consider only the case of zero temperature. In the
dynamical limit, assuming that the states (34) and (35)
with a = + are occupied initially and the occupation num-
bers are preserved dynamically and using equation (20),
we find a 4π-periodic current:

I(t) =

√
De∆0

2�

[
sin
(
φ+ θ

2

)
+ sin

(
φ− θ

2

)]

=
√
De∆0

�
sin
(
φ(t)
2

)
cos
(
θ

2

)
. (36)

In the static thermodynamic limit, using equation (19) at
T = 0, we find the dc Josephson current:

I =

√
De∆0

2�

{
sin
(
φ+ θ

2

)
sgn

[
cos
(
φ+ θ

2

)]

+ sin
(
φ− θ

2

)
sgn

[
cos
(
φ− θ

2

)]}
. (37)

For completeness, let us also consider the Josephson ef-
fect between two py-wave or two pz-wave superconduc-
tors, where the y and z axes are parallel to the junction
plane. In these junctions, midgap states are absent in the
D → 0 limit, thus the current-phase relation is conven-
tional I = Ic sinφ. For nonparallel vectors n, the total
Josephson current is the sum of the spin up and down
sectors:

I =
Ic
2

[sin(φ+ θ) + sin(φ− θ)]

= Ic cos θ sinφ = Ic(nL · nR) sinφ. (38)

Equation (38) is consistent with reference [19]. In the
case where the two vectors n are perpendicular (θ =
π/2), the Josephson current (38) for the superconduc-
tors without midgap states vanishes, but, according to
equations (36, 37), it is not zero if the midgap states are
present.

3.7 s-px junction between singlet and triplet
superconductors

In this section, we consider a junction between a singlet
s-wave and a triplet px-wave superconductors. The junc-
tion geometry is the same as in Figure 1a, where one of
the superconductors is taken to be a conventional s-wave
superconductor and another one a Q1D triplet px-wave
superconductor, such as (TMTSF)2X.

We choose the spin quantization axis z along the polar-
ization vector n of the triplet superconductor, so the spin
projection σ on the z-axis is a good quantum number.
In both triplet and singlet superconductors, the Cooper
pairing takes place between electrons with opposite spins.
However, the pairing potential has the same sign for σ
and σ̄ in the triplet superconductor and the opposite
signs in the singlet superconductor. Thus, the phase dif-
ference across the Josephson junction is φ for quasipar-
ticles with σ =↑ and φ + π for σ =↓. The energies of
the Andreev bound states can be found for each σ from
equation (12) together with equation (9), where we should
use the upper line of equation (10) for the left supercon-
ductor and the lower line for the right superconductor.
To simplify calculations, we consider the case where the
magnitudes of the gaps are equal for the s- and px-wave
superconductors: |∆L| = |∆R| = ∆0. The energies of the
Andreev bound states are

Ea,σ = σ sgn(sinφ)∆0

√
1 + a

√
1 −D2 sin2 φ

2
. (39)

For each value of the spin index σ = ±, equation (39)
gives two Andreev states labeled by the index a = ±. In
the tunneling limit D 
 1, we have

E+,σ ≈ σ sgn(sinφ)∆0

(
1 − 1

8
D2 sin2 φ

)
, (40)

E−,σ ≈ 1
2
σ∆0D sinφ. (41)

The energies (39) are plotted in Figure 3a vs. φ by the
solid lines for σ =↑ and by the dashed lines for σ =↓.
We observe that the branches (40) with a = + touch
the gap boundaries ±∆0 at φ = 0 and π, whereas the
branches (41) with a = − stay in the center of the gap.

In the limit D 
 1, the central branches with a = −
dominate the energy dependence on φ, and energy min-
ima are achieved at φ = π/2 or 3π/2. Notice that if the
system selects the energy minimum at φ = π/2, then
the spin down states, shown by the dashed lines in Fig-
ure 3a, are populated, and the spin up states are empty,
so the junction accumulates the spin −�/2 per conducting
channel [41]. If the system selects the energy minimum at
φ = 3π/2, then the junction accumulates the spin �/2 per
conducting channel.

In the limit D 
 1, we can neglect the energies (40)
and obtain the Josephson current by differentiating the
energies (41) with respect to φ using equation (15) [41].
In the dynamical limit, the occupation numbers of the An-
dreev states (41) are preserved, and the Josephson current
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Fig. 3. The subgap energy levels and the Josephson currents in
the s-px junction. Here D = 0.8 and I0 = e∆0/2�. (a) The en-
ergies (39) of the Andreev bound states. The solid and dashed
lines correspond to σ =↑ and σ =↓. (b) The Josephson cur-
rent in the static thermodynamic limit, where the states with
E < 0 are occupied. (c) The Josephson current in the dynam-
ical limit, where the central branch with σ =↓ and the lower
branches touching −∆0 are occupied.

has the 2π-periodicity, as shown in Figure 3c:

I(t) ≈ − e

2�
∆0D cosφ(t). (42)

In the static thermodynamic limit, the system occupies
the branch of the minimal energy for each φ, and the
Josephson current is π-periodic, as shown in Figure 3b:

I(φ) ≈ − e

2�
∆0D sgn(sinφ) cosφ. (43)

The thermodynamic assumption implies that the spin ac-
cumulation at the s-px junction changes sign when the
phase φ crosses π.

Now let us consider the circuit shown in Figure 4,
where a px-wave superconductor has Josephson junctions
at both ends with an s-wave superconductor closed in a
loop. Because the sign of the px-wave pairing potential is
opposite for the +kF and −kF sheets of the Fermi surface,
the two junctions have the relative phase shift π. Naively,
one might expect a spontaneous current in this circuit by
analogy with the corner SQUID in the cuprates [1]. How-
ever, the system shown in Figure 4 can accommodate the
phase shift π by selecting the energy minimum at φ = π/2
for one junction and the energy minimum at φ = 3π/2 for
another junction. Then, no current circulates in the loop.
However, one junction accumulates spins up and another

p −wavex

s−wave

k

k

x

y

+∆−∆0 0

Fig. 4. A Q1D px-wave superconductor closed in a loop by an
s-wave superconductor. No current is circulating in the loop
in equilibrium. However, there is accumulation of spins up in
one s-px junction and spins down in another junction. The
sketch at the top illustrates the Fermi surface of a Q1D metal
with the opposite signs of the superconducting px-wave pairing
potential on the two sheets of the Fermi surface.

junction spins down, which might be possible to detect
experimentally.

The results of the this section clearly show that a
Josephson current is possible between singlet and triplet
superconductors, in agreement with the earlier findings by
Yip [29]. Recently, the Josephson current was calculated
for the s-px junction in reference [31], but spin accumu-
lation at the junction was not recognized in this paper.
The s-px junction considered in this section is mathemat-
ically equivalent to the 0◦/45◦ d-d junction and the 45◦
junction between an s-wave and a d-wave superconductors
(see Sect. 4.1). Equation (39) was obtained for that case in
references [23–25]. However, there is no spin accumulation
in junctions between singlet s- and d-wave superconduc-
tors, unlike in the s-px junction.

4 Junctions between quasi-two-dimensional
superconductors

In this section, we study junctions between quasi-two-
dimensional (Q2D) superconductors such as nonchiral d-
wave cuprates and chiral px ± ipy-wave ruthenates. For
simplicity, we use an isotropic electron energy dispersion
law ε = �

2(k2
x + k2

y)/2m − µ in the (x, y)-plane. As be-
fore, we select the coordinate x perpendicular to the junc-
tion line and assume that the electron momentum compo-
nent ky parallel to the junction line is a conserved good
quantum number. Then, the 2D problem separates into
a set of 1D solutions (8) in the x-direction labeled by
the index ky. The Fermi momentum kF and velocity vF

are replaced by their x-components kFx =
√
k2

F − k2
y and

vFx = �kFx/m. The transmission coefficient of the bar-
rier (7) becomes ky-dependent

Z(ky) = Z0
kF√
k2

F − k2
y

, D(ky) =
4

Z2(ky) + 4
, (44)
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where Z0 =
√

2mU0/�kF . The total Josephson current is
given by a sum over all occupied subgap states labeled
by ky.

4.1 Josephson junctions between d-wave
superconductors

For the cuprates, let us consider a junction parallel to the
[1, 1̄] crystal direction in the (a, b) plane and select the
x-axis along the diagonal [1, 1], as shown in Figure 5a. In
these coordinates, the d-wave pairing potential is

∆̂σky (x, k̂x) = σ2∆β kyk̂x/k
2
F , (45)

where the same notation as in equation (4) is used. Di-
rect comparison of equations (45) and (4) demonstrates
that the d-wave superconductor with the 45◦ junction
maps to the px-wave superconductor by the substitution
∆0 → σ2∆0ky/kF . Thus, the results obtained in Sec-
tion 3 for the px-px junction apply to the 45◦/45◦ junc-
tion between two d-wave superconductors with the ap-
propriate integration over ky. The energies of the subgap
Andreev states are given by equation (14) with the ky-
dependent parameters ∆0 and D, and the energies and
the wave functions are 4π-periodic functions of φ. Thus,
the ac Josephson current in the dynamical limit is 4π-
periodic and has the fractional frequency eV/�, as in equa-
tions (20), (22), and (32). The energies (14) of the sub-
gap states [35,24] and the dc Josephson current (19) in
the thermodynamic limit [23,24] were calculated for the
45◦/45◦ d-d junction before. However, these papers did
not recognize the fractional, 4π-periodic character of the
Josephson effect in the dynamical limit.

On the other hand, if the junction is parallel to
the [0, 1] crystal direction, as shown in Figure 5b, then
∆̂σky (x, k̂x) = σ∆β (k̂2

x −k2
y)/k2

F . This pairing potential is
an even function of k̂x, thus it is analogous to the s-wave
pairing potential in equation (4). Then, the 0◦/0◦ junc-
tion between two d-wave superconductors is analogous to
the s-s junction. It should exhibit the conventional 2π-
periodic Josephson effect with the frequency 2eV/�.

For a generic orientation of the junction line, the d-
wave pairing potential is px-like for some momenta ky and
s-like for other ky . Thus, the total Josephson current is a
sum of the unconventional and conventional terms:

I = C0 sin(φ/2) + C1 sin(φ) + . . . , (46)

where C0 and C1 are some coefficients. We expect that
both terms in equation (46) are present for any real junc-
tion between d-wave superconductors because of imper-
fections in junction orientation. However, the ratio C0/C1

should be maximal for the junction shown in Figure 5a
and minimal for the junction shown in Figure 5b. In gen-
eral, whenever the superconductors on both sides of the
junction have surface midgap states, we expect to observe
the 4π-periodic fractional ac Josephson effect. In princi-
ple, the effect may be spoiled by the gapless quasiparticles
that exist near the gap nodes in a d-wave superconductor.

(a) a
b

a
b

ky kx

a
b

a
b

ky

kx

AB CD

(b)

A

C

D

B

Fig. 5. Schematic drawing of the 45◦/45◦ junction (panel a)
and 0◦/0◦ junction (panel b) between two d-wave superconduc-
tors. The thick line represents the junctions line. The circles
illustrate the Fermi surfaces, where positive and negative pair-
ing potentials ∆ are shown by the solid and dotted lines. The
points A, B, C, and D in the momentum space are connected
by transmission and reflection from the barrier.

However, they would affect only a small portion of the
Fermi surface near the nodes, and the 4π-periodic Joseph-
son effect should survive on the other parts of the Fermi
surface, where the gap is big.

The 45◦/45◦ junction shown in Figure 5a should not
be confused with the 0◦/45◦ d-d junction [42] or the 45◦
s-d junction [43,44], much discussed in literature. None
of the papers [42–44] treated the problem correctly, be-
cause they did not take into account the Andreev bound
states in the junction properly. The correct energy spec-
trum of the Andreev bound states was obtained in ref-
erences [24,25,35]. In the 0◦/45◦ d-d and 45◦ s-d junc-
tions, only one superconductor has midgap states, thus
these junctions are mathematically analogous to the s-px

junction considered in Section 3.7. The spectrum of the
Andreev bound states is given by equation (39) without
the factor σ, because both superconductors are singlet.
The energy levels are plotted vs. φ in Figure 3a, where
the solid and dashed lines represent not spin, but positive
and negative momenta ky. The junction has two energy
minima at φ = π/2 or 3π/2, where the states with only
negative or positive momenta ky are filled, thus there are
persistent currents along the junction line [45,46]. (On
the other hand, there is no spin accumulation, unlike in
the s-px junction discussed in Sect. 3.7.) In the thermo-
dynamic limit, the current-phase relation shown in Fig-
ure 3b is π-periodic; however, it requires reversing the
currents along the junction line when φ passes through
0 or π. In the dynamical limit, the current-phase relation
shown in Figure 3c is 2π-periodic. The first two harmon-
ics I = C1 sin(φ)+C2 sin(2φ) have been recently observed
experimentally in the 0◦/45◦ d-d junction [47].

4.2 Josephson junctions with chiral superconductors

In this section, we study junctions between the chiral
px ± ipy-wave superconductors Sr2RuO4, where the pair-
ing potential is assumed to be ∆(k) = ∆0(kx±iky)/kF [6],
and the two signs correspond to opposite chiralities. We
assume a uniform orientation of the spin-polarization vec-
tor n across the junction. This problem was investigated



358 The European Physical Journal B

Fig. 6. The subgap energy spectra and the Josephson currents in the junctions with chiral px ± ipy-wave superconductors,
calculated for Z0 = 1. (a) Junction between two p-wave superconductors with opposite chiralities. (b) Junction between two
p-wave superconductors with the same chirality. (c) Junction between s-wave and chiral p-wave superconductors. In the second
and third columns of row (a), the solid and dashed lines show the a = ± branches of equation (47) for different values of φ. In
rows (b) and (c), the energies (48) and (49) are shown by the solid and dashed lines for φ = 0 and π/2 in the second column
and for φ = π and 3π/2 in the third column. The energies of quasiparticles with σ =↓ are the same as with σ =↑ for rows (a)
and (b), and they can be obtained by the shift φ → φ + π for row (c). The fourth column shows the Josephson current in the
static thermodynamic limit, normalized by I0 = e∆0LykF /2π�, where Ly is the length of the junction.

in reference [28] using the Eilenberger equation for Green’s
functions. It was found that the chiral subgap states at the
junctions enhance the low-temperature critical Josephson
current in symmetric junctions. Here we use the BdG
equation to obtain the spectrum of the Andreev bound
states. As before, we assume that the momentum compo-
nent ky parallel to the junction is conserved. Thus, the
problem separates into a set of 1D solutions in the x-
direction perpendicular to the junction plane, and we can
use the method of Section 3.1.

First we consider a junction between two supercon-
ductors with opposite chiralities, as illustrated in the first
column of Figure 6a. In this case, ∆L = ∆0(kx + iky)/kF

and ∆R = eiφ∆0(kx − iky)/kF . When the barrier is not
transparent (D = 0), each superconductor has chiral
Andreev surface states with the same energy dispersion
E(ky) = ky∆0/kF [13]. The electron tunneling amplitude
τ ∝ √

D produces a matrix element mixing the two states
in the first-order degenerate perturbation theory. Thus,
the two energy spectra repel with the splitting propor-
tional to

√
D. From equation (12), we find the following

subgap energies:

E =
∆0

kF

(
ky

√
1 −D cos2

φ

2
±
√
k2

F − k2
y

√
D cos

φ

2

)
.

(47)
The energy levels splitting oscillates with the period 4π as
a function of φ: δE = (∆0/kF )

√
k2

F − k2
y

√
D cosφ/2. The

splitting depends on ky through the square-root prefactor
and through the dependence of D on ky in equation (44),

and vanishes at ky = ±kF . The energy dispersion (47)
is plotted vs. ky in the second and third columns of Fig-
ure 6a for several values of φ. The spectrum of excitations
is gapless because of the chiral dispersion in ky. Thus, it is
reasonable to assume that the occupation numbers of the
subgap states are in instantaneous thermodynamic equi-
librium for any phase φ. Then, the Josephson current is a
2π-periodic function of φ, as illustrated at zero tempera-
ture in the fourth column of Figure 6a, even though the
energy levels (47) are 4π-periodic functions of φ.

Now let us consider the case of two superconductors
with opposite chiralities, as illustrated in the first column
of Figure 6b. When the two superconductors are discon-
nected (D = 0), their chiral Andreev surface states have
opposite dispersions E = ±ky∆0/kF , thus they are non-
degenerate. The electron tunneling amplitude τ ∝ √

D re-
pels the energy levels around the intersection point ky = 0.
From equation (12), we find the following subgap energies:

E = ±∆0

kF

√
(1 −D)k2

y +Dk2
F cos2

φ

2
. (48)

The energy dispersion (48) is plotted vs. ky in the second
and third columns of Figure 6b for several values of φ. The
energy splitting around ky = 0 is a 2π-periodic function
of φ and vanishes at φ = π. The Josephson current is a 2π-
periodic function of φ, as illustrated at zero temperature
in the fourth column of Figure 6b.

Now let us consider a junction between an s-wave and
a px + ipy-wave superconductors shown in the first col-
umn of Figure 6c. The Josephson current was calculated
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in this case in reference [31] using the method of Green’s
functions. However, the energies of the Andreev bound
states were not written explicitly. The subgap states in
this junction are obtained by solving equation (12) in the
manner similar to the 1D s-px junction. For simplicity, we
assume that the magnitudes of the pairing potentials in
both superconductors are the same: |∆L| = |∆R| = ∆0.
The square of the subgap energies is given by the following
expression

E2
a,σ =

∆2
0

2

(
1 +Rk̃2

y − σDk̃y sinφ

+ a
√

1 − k̃2
y

√
1 − (Rk̃y − σD sinφ)2

)
, (49)

where R = 1 − D is the reflection coefficient, and k̃y =
ky/kF . The signs of the energies are

sgnEa,σ = sgn


−Rk̃y + σD sinφ

+ak̃y

√√√√1 − (Rk̃y − σD sinφ)2

1 − k̃2
y


 . (50)

For a given σ, there are two branches of energies labeled
by the index a = ±. The energy dispersions E±,↑(ky)
are shown in the second and third columns of Figure 6c
for several phases φ. In the limit of impenetrable barrier
D → 0, the energy branch with a = + approaches to the
gap edges |E+| → ∆0, whereas the branch with a = −
approaches to the energy dispersion E− → −ky∆0/kF of
the chiral surface states in the px + ipy-wave superconduc-
tor [13].

The energyEa,σ(ky) for a given σ is a 2π-periodic func-
tion of φ. The energy Ea,σ̄(ky) is obtained from Ea,σ(ky)
by the shift φ → φ + π, as discussed in Section 3.7.
Thus, the Josephson current (16) in the static thermo-
dynamic limit, obtained by summation over σ and ky, is a
π-periodic function of φ, as shown in the fourth column of
Figure 6c, in agreement with reference [31]. Similarly to
the s-px junction considered in Section 3.7, the s-(px+ipy)
junction has two equal energy minima [31] at φ = π/2 and
3π/2 accompanied by accumulation of the down spin for
φ = π/2 and the up spin for φ = 3π/2.

5 Experimental observation of the fractional
ac Josephson effect

Conceptually, the setup for experimental observation of
the fractional ac Josephson effect is straightforward. One
should apply a dc voltage V to the junction and mea-
sure frequency spectrum of microwave radiation from the
junction, expecting to detect a peak at the fractional fre-
quency eV/�. Higher harmonics, such as 2eV/�, may also
be present because of equation (46) and circuit nonlin-
earities, but an observation of the 1/2 subharmonic of the

conventional Josephson frequency 2eV/� would be the sig-
nature of the effect.

Josephson radiation at the conventional fre-
quency 2eV/� was first observed experimentally almost
40 years ago in Kharkov [48,49], followed by further
work [50,51]. In reference [49], the spectrum of microwave
radiation from tin junctions was measured, and a sharp
peak at the frequency 2eV/� was found. Without any
attempt to match impedances of the junction and waveg-
uide, Dmitrenko and Yanson [49] found the signal several
hundred times stronger than the noise and the ratio of
linewidth to the Josephson frequency less than 10−3.
More recently, a peak of Josephson radiation was observed
in reference [52] in indium junctions at the frequency
9 GHz with the width 36 MHz. In reference [53], a peak
of Josephson radiation was observed around 11 GHz with
the width 50 MHz in Bi2Sr2CaCu2O8 single crystals with
the current along the c-axis perpendicular to the layers.

To observe the fractional ac Josephson effect predicted
in this paper, it is necessary to perform the same exper-
iment with the 45◦/45◦ cuprate junctions shown in Fig-
ure 5a. For control purposes, it is also desirable to mea-
sure frequency spectrum for the 0◦/0◦ junction shown in
Figure 5b, where a peak at the frequency eV/� should
be minimal. It should be absent completely in a conven-
tional s-s junction, unless the junction enters a chaotic
regime with period doubling [54,55]. The high-Tc junc-
tions of the required geometry can be manufactured using
the step-edge technique. Bicrystal junctions are not ap-
propriate, because the crystal axes a and b of the two
superconductors are rotated relative to each other in such
junctions. As shown in Figure 5a, we need the junction
where the crystal axes of the two superconductors have
the same orientation. Unfortunately, attempts to manu-
facture Josephson junctions from the Q1D organic super-
conductors (TMTSF)2X failed thus far.

The most common way of studying the ac Josephson
effect is observation of the Shapiro steps [56]. In this setup,
the Josephson junction is irradiated by microwaves with
the frequency ω, and steps in dc current are detected at
the dc voltages Vn = n�ω/2e. Unfortunately, this method
is not very useful to study the effect that we predict. In-
deed, our results are effectively obtained by the substitu-
tion 2e → e. Thus, we expect to see the Shapiro steps at
the voltages Vm = m�ω/e = 2m�ω/2e, i.e. we expect to
see only even Shapiro steps. However, when both terms are
present in equation (46), they produce both even and odd
Shapiro steps, so it would be difficult to differentiate the
novel effect from the conventional Shapiro effect. Notice
also that the so-called fractional Shapiro steps observed
at the voltage V1/2 = �ω/4e corresponding to n = 1/2
have nothing to do with the effect that we propose. They
originate from the higher harmonics in the current-phase
relation I ∝ sin(2φ). The fractional Shapiro steps have
been observed in cuprates [57–59], but also in conventional
s-wave superconductors [60]. Another method of measur-
ing the current-phase relation in cuprates was employed in
reference [61], but connection with our theoretical results
is not clear at the moment.
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6 Conclusions

In this paper, we study suitably oriented px-px or d-d
Josephson junctions, where the superconductors on both
sides of the junction originally have the surface Andreev
midgap states. In such junctions, the Josephson cur-
rent I, carried by the hybridized subgap Andreev bound
states, is a 4π-periodic function of the phase difference
φ: I ∝ sin(φ/2), in agreement with reference [27]. Thus,
the ac Josephson current should exhibit the fractional
frequency eV/�, a half of the conventional Josephson fre-
quency 2eV/�. In the tunneling limit, the Josephson cur-
rent is proportional to the first power of the electron tun-
neling amplitude, not the square as in the conventional
case [23–25]. Thus, the Josephson current in the consid-
ered case is carried across the interface by single electrons
with charge e, rather than by Cooper pairs with charge 2e.
The fractional ac Josephson effect can be observed exper-
imentally by measuring frequency spectrum of microwave
radiation from the junction and detecting a peak at eV/�.

In px-px junctions with nonparallel orientation of the
spin-polarization vectors n, the Josephson current de-
pends on the relative angle between the vectors n [19].
The Josephson current is permitted between singlet and
triplet superconductors, but, in the static thermodynamic
limit, the current-phase relation is π-periodic [29]. The s-
p junction has two equal minima in energy at φ = π/2
and 3π/2 [31], characterized by accumulation of the up or
down spins (oriented relative to the vector n) in the junc-
tion. In Josephson junctions between chiral px ± ipy-wave
superconductors, the Andreev bound states are also chi-
ral. In the static thermodynamic limit, the current-phase
relation has the period of 2π in the chiral p-p junctions [28]
and the period of π in the chiral s-p junctions [31].

VMY and HJK thank F.C. Wellstood, C.J. Lobb, and
A.Yu. Kitaev for useful discussions. KS thanks S.M. Girvin for
support. The work was supported by the NSF Grant DMR-
0137726.

Note added in proof

The fractional Josephson effect discussed in our paper is
similar to the fractional quantum Hall effect [62]. Both in-
volve existence of several equivalent ground states, whose
energy levels cross: Compare Figure 1c of our paper and
Figure 2a of reference [62].
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